Transponer vs Transponer conjugada
La transposición de una matriz A se puede identificar como la matriz obtenida reordenando las columnas como filas o las filas como columnas. Como resultado, los índices de cada elemento se intercambian. Más formalmente, la transposición de una matriz A se define como
dónde
En una matriz de transposición, la diagonal permanece sin cambios. Pero todos los demás elementos giran alrededor de la diagonal. Además, el tamaño de las matrices también cambia de m × n an × m.
La transposición tiene algunas propiedades importantes y permiten una manipulación más fácil de matrices. Además, algunas matrices de transposición importantes se definen en función de sus características. Si la matriz es igual a su transpuesta, entonces la matriz es simétrica. Si la matriz es igual a su negativo de la transpuesta, entonces la matriz es un sesgo simétrico.
La transpuesta conjugada de una matriz es la transpuesta de la matriz con los elementos reemplazados por su conjugado complejo. Es decir, el conjugado complejo (A *) se define como la transpuesta del conjugado complejo de la matriz A.
A * = (Ā) T; En detalle,
dónde
y ā ji ε C.
También se conoce como transposición hermitiana y conjugada hermitiana. Si la transposición conjugada es igual a la matriz misma, la matriz se conoce como matriz hermitiana. Si la transposición conjugada es igual al negativo de la matriz, es una matriz hermitiana sesgada. Y si la inversa de la matriz es igual al conjugado complejo, la matriz es unitaria.
Asimismo, todas las matrices especiales conjugadas complejas también tienen propiedades especiales que pueden usarse para manipularlas matemáticamente fácilmente. La transposición conjugada se usa ampliamente en la mecánica cuántica y sus campos relevantes.
¿Cuál es la diferencia entre Transpose y Conjugate Transpose?
• La transposición de una matriz se obtiene reorganizando las columnas en filas o las filas en columnas. El conjugado complejo de una matriz se obtiene reemplazando cada elemento por su conjugado complejo (es decir, x + iy ⇛ x-iy o viceversa). La transposición conjugada se obtiene realizando ambas operaciones en la matriz.
• Por lo tanto, la transposición conjugada es solo una matriz de transposición con sus conjugados complejos como elementos.